

Energy Landscapes of Today and Tomorrow
24 and 25 September 2018, KUBUS Leipzig

Onshore wind and solar farms in Great Britain: an energy justice analysis

Pip Roddis, PhD Candidate, University of Leeds, UK
25th September 2018

Overview

- ADVENT project (Addressing Valuation of Energy and Nature Together)
- Project focus: UK energy pathways implications for ecosystem services and natural capital
- UK Energy Research Centre (UKERC)
- UK Natural Environment Research Council (NERC)
- PhD focus: relationship between public acceptance of energy technologies and ecosystem services (landscape/visual impacts)

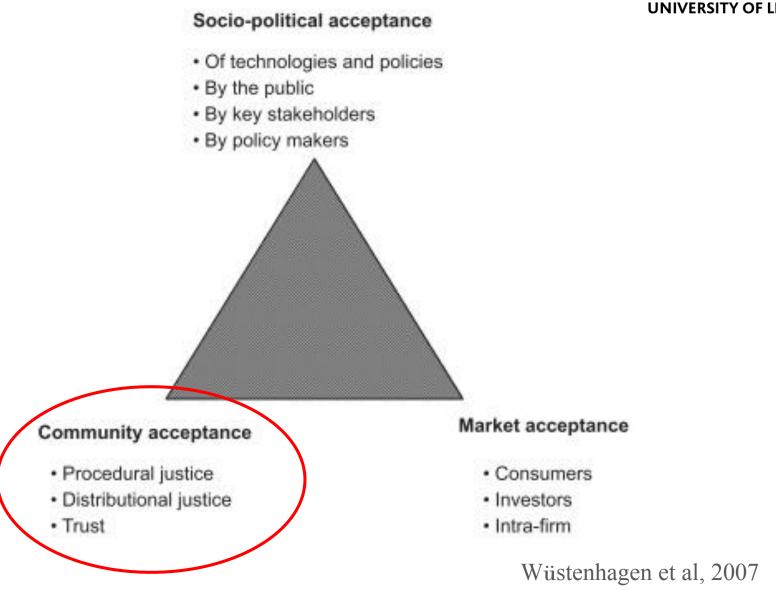
Rationale

"The transition towards a low carbon economy will require the reappraisal of the **form**, **function and value** of some contemporary and familiar landscapes [...]

For many people, 'low carbon energy transition' is experienced as the **transformation of landscape**"

Bridge et al, 2013 (p.335)

Technologies

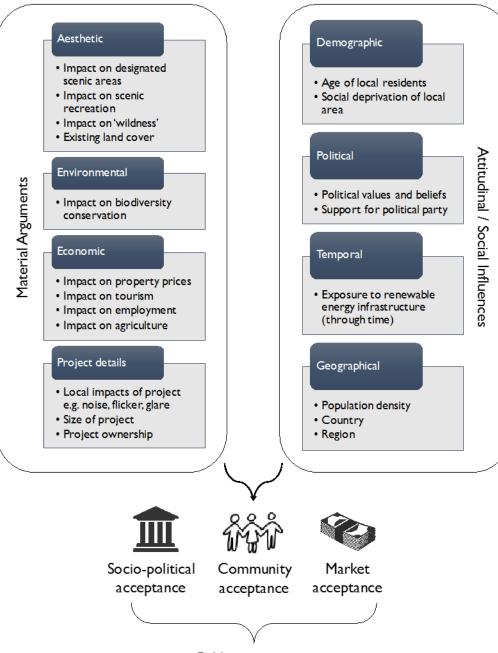


Most common land-based renewables in the UK

Theory

Research questions

- 1. Does community acceptance play a role in planning outcomes for onshore wind/solar farms in Great Britain?
- 2. What are the consequences of (1) for where onshore wind and solar farms are sited across Great Britain?
- 3. What are the **energy justice** implications of (1) and (2)?



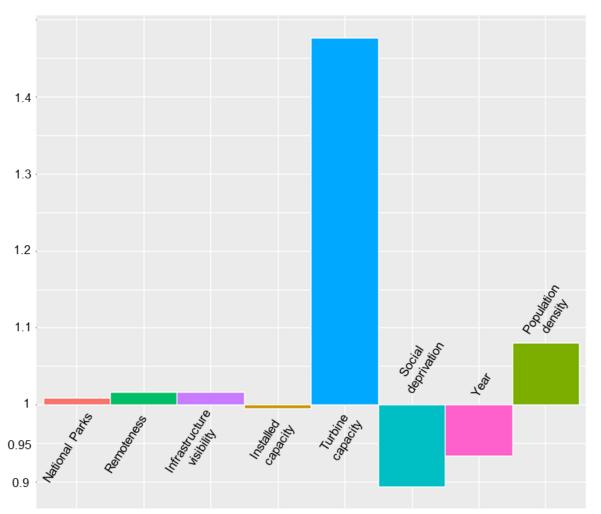
Approach to analysis

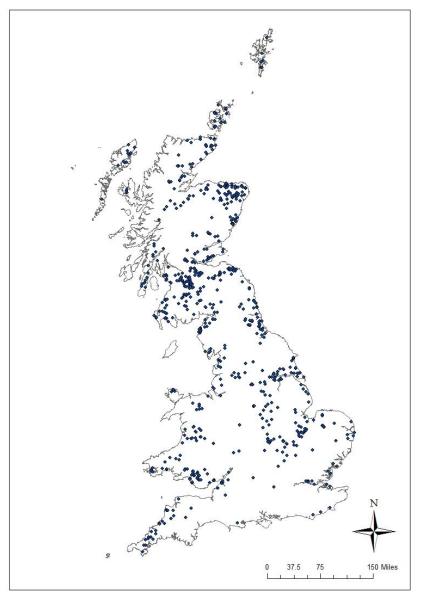
- Developed **conceptual framework**: indicators of community acceptance
- Obtained **planning data** from UK Renewable Energy Planning Database
- Calculated independent variables from a range of **geospatial datasets**
- Used binomial logistic regression to test association between them
- Scope: 1MW+ projects in **Great Britain** (applications lodged 1990-2017)
- Tested **hypothesis** that community acceptance has a role in planning outcomes

Conceptual framework

Specific arguments or reasons used to support and/or oppose projects

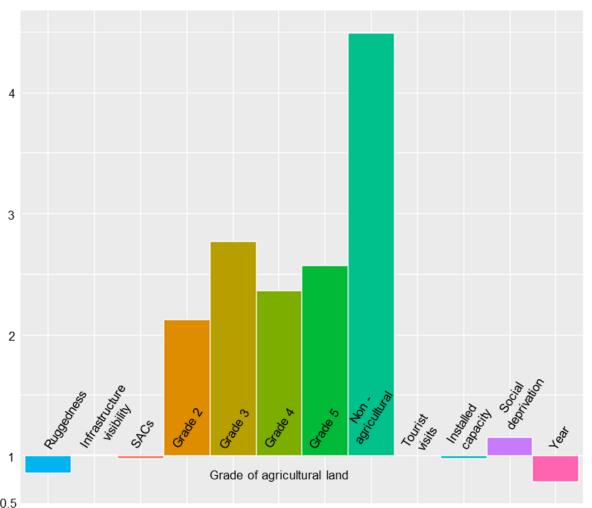
Factors
which
influence
positive /
negative
social
responses
to projects

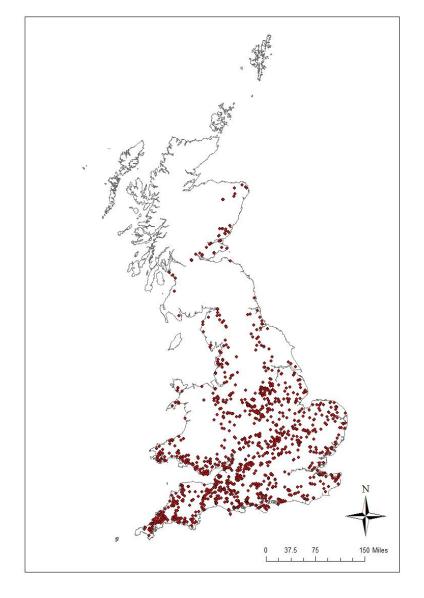



Key findings

- For both technologies:
 - the **visibility** of a project
 - its installed capacity
 - the **year** of the application
 - the **social deprivation** of the area
- For onshore wind:
 - turbine capacity
 - the project's **remoteness**
 - its distance to National Parks
 - the **population density** of the local area
- For solar farms:
 - the **ruggedness** of the landscape
 - the grade of agricultural land
 - the number of **tourist visits** to the area
 - distance to Special Areas of Conservation (SACs)

Findings: onshore wind





Pip Roddis, University of Leeds, 25th September 2018, EnergyDays 2018 Conference

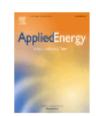
Findings: solar farms

Pip Roddis, University of Leeds, 25th September 2018, EnergyDays 2018 Conference

Energy justice analysis

	Distributional justice	Procedural justice	Recognition justice
Definition	Distribution of the impacts (+/-) of renewable energy	Fair representation of all stakeholders in energy-related decision-making (and who is recognised as a relevant stakeholder)	
Relevant findings	Visual impacts are being concentrated in certain locations	Onshore wind farms are more likely to be sited in wealthier areas, solar farms more likely to be sited in more deprived areas	
Key questions raised by analysis	Are renewables an environmental benefit or burden?	Are solar farms less popular with wealthy communities than onshore wind farms? What is the relationship between public acceptance and energy justice?	

Heffron and McCauley, 2017



Recently published paper

Applied Energy

Volume 226, 15 September 2018, Pages 353-364

The role of community acceptance in planning outcomes for onshore wind and solar farms: An energy justice analysis

Philippa Roddis a ス ス, Stephen Carver A ス Martin Dallimer A ス Paul Norman A ス Guy Ziv

https://doi.org/10.1016/j.apenergy.2018.05.087

Get rights and content

Open Access funded by Natural Environment Research Council

Under a Creative Commons license

open access

Future work

- Viewshed analysis (who is exposed to most visual impact?)
- Spatial and temporal analysis of the UK Energy and Climate Change Public Attitudes Tracker survey
- Case studies of renewable energy planning applications

Thank you

P.Roddis1@leeds.ac.uk

@piproddis

References

Bridge, Gavin, Stefan Bouzarovski, Michael Bradshaw, Nick Eyre (2013) 'Geographies of energy transition: Space, place and the low carbon economy' *Energy Policy* 53: 331–340.

Wüstenhagen, Rolf, Maarten Wolsink, Mary Jane Bürer (2007) 'Social acceptance of renewable energy innovation: An introduction to the concept' *Energy Policy* 35: 2683–2691.

Heffron, Raphael J., Darren McCauley (2017) 'The concept of energy justice across the disciplines' Energy Policy 105: 658–667.